Singular Hartree equation in fractional perturbed Sobolev spaces
نویسندگان
چکیده
We establish the local and global theory for Cauchy problem of singular Hartree equation in three dimensions, that is, modification non-linear Schrodinger with n...
منابع مشابه
Composition in Fractional Sobolev Spaces
1. Introduction. A classical result about composition in Sobolev spaces asserts that if u ∈ W k,p (Ω)∩L ∞ (Ω) and Φ ∈ C k (R), then Φ • u ∈ W k,p (Ω). Here Ω denotes a smooth bounded domain in R N , k ≥ 1 is an integer and 1 ≤ p < ∞. This result was first proved in [13] with the help of the Gagliardo-Nirenberg inequality [14]. In particular if u ∈ W k,p (Ω) with kp > N and Φ ∈ C k (R) then Φ • ...
متن کاملThe Kawahara equation in weighted Sobolev spaces
Abstract The initialand boundary-value problem for the Kawahara equation, a fifthorder KdV type equation, is studied in weighted Sobolev spaces. This functional framework is based on the dual-Petrov–Galerkin algorithm, a numerical method proposed by Shen (2003 SIAM J. Numer. Anal. 41 1595–619) to solve third and higher odd-order partial differential equations. The theory presented here includes...
متن کاملThe Poisson equation in homogeneous Sobolev spaces
We consider Poisson’s equation in an n-dimensional exterior domain G (n≥ 2) with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G), containing functions being local in Lq(G) and having second-order derivatives in Lq(G). Concerning the uniqueness of this solution we ...
متن کاملSharp Singular Adams Inequalities in High Order Sobolev Spaces
In this paper, we prove a version of weighted inequalities of exponential type for fractional integrals with sharp constants in any domain of finite measure in R. Using this we prove a sharp singular Adams inequality in high order Sobolev spaces in bounded domain at critical case. Then we prove sharp singular Adams inequalities for high order derivatives on unbounded domains. Our results extend...
متن کاملConditioning Analysis of Nonlocal Integral Operators in Fractional Sobolev Spaces
We study the condition number of the stiffness matrix arising from finite element discretizations of nonlocal integral operators with singular and integrable kernels. Such operators are used in nonlocal diffusion, peridynamics formulation of continuum mechanics, image processing, and phase transition. We quantify of the extremal eigenvalues with respect to all underlying parameters; the horizon...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Nonlinear Mathematical Physics
سال: 2021
ISSN: ['1776-0852', '1402-9251']
DOI: https://doi.org/10.1080/14029251.2018.1503423